A method of automatic assessment of feature
compatibility in mobile networks

Szymon Fedor and Liam Fallon
Network Management Lab
Ericsson Software Campus
Athlone, Ireland
Email: {szymon.fedor, liam.fallon} @ericsson.com

Abstract—Deployment and upgrade of a mobile network
have always been challenging tasks. Very often they require
human intervention because telecom networks are complex
systems composed of different nodes that need to be compat-
ible in order to communicate and provide network services.
Therefore in current telecommunication systems a network
expert must check all the requirements and compatibilities of
the network prior to activation of a new service. Automation
of the assessment of network compatibility is one of the key
enablers for Autonomic Management of telecom networks. In
this paper we describe a new method for automatic end-
to-end assessment of compatibility between network features
in a telecom network. The method enables fast, easy and
accurate decision making regarding the planning of new feature
deployment or the upgrade of already existing features. We
built a prototype that demonstrates the described method. It
shows that our method is not bound to any type of telecom
network and could be used to automate deployment or upgrade
of a multiple-domain network.

Keywords-Autonomic Management; feature compatibility;
mobile network;

I. INTRODUCTION

The operation of a mobile network is enabled by network
features which work together to give a correctly functioning
telecom system. An operator must deploy basic features
which are the minimum requirements for management of
a network, e.g. SMS over GPRS in HLR' or Emergency
Call®. In addition to that a network operator can decide to
install enhanced or optional features (e.g. SGSN In Pool® or
HSDPA Mobility*) in order to improve network capabilities.

Telecommunication networks, and the features offered on
those networks, are becoming larger and more complex. It is

IThe SMS over GPRS in HLR feature provides a subscriber with the
possiblity to send and receive Mobile Terminated and Mobile Originated
Short Message Services (SMS) over the General Packet Radio Service
(GPRS) in a GSM network.

2In WCDMA network Emergency Call feature supports emergency calls
within WCDMA RAN. It also enables emergency call setup in congested
WCDMA cells where normal voice calls would be rejected.

3In WCDMA network SGSN In Pool makes it possible to connect an
RNC to several SGSNs.

4HSDPA Mobility enables the HSDPA user to change cell with a
minimum of user data interruption.

978-1-4244-6557-6/10/$26.00 ©2010 IEEE

very commonplace to see network features implemented in
many network elements which are often located in different
network domains. For example, the “SGSN in Pool” feature
is implemented in SGSNs in the mobile core network and
in RNCs and BSCs in Radio Access Networks.

Network features are increasingly implemented largely
or solely in software. The concept of software defined
radio heralds an era where all radio and digital signalling
processing is defined using software. Software embedded
in network elements uses enabling technology such as web
services and peer to peer techniques to implement advanced
Self Organising Network (SON) features such as Automatic
Neighbour Relations (ANR)°.

Today, the software for most network elements is bundled
into a single load module. All the software programs needed
to implement the features supported by a network element
(which might include part of network features) are packaged
into this single load module. Ensuring that all network
features are compatible across all nodes that implement
features is currently handled as an off-line administrative
activity.

The current process of software installation and upgrade
in a telecom network is inefficient especially in the future
context when software packages will be deployed more
frequently then nowadays. An upgrade or deployment of
a new feature is preceeded by a careful back office study
to ensure compliance among all network components after
activation of that new feature. This analysis of feature
compatibility is usually performed manually and therefore
is error-prone and expensive because it requires expertise in
various telecom domains.

In this paper we describe a new method for an automatic
assessment of feature compatibility prior to upgrade or
deployment of a new feature in a network. The proposed
solution will reduce the cost and effort related to the
planning and deployment of new network features. It will
enable the introduction of an automatic process for checking

SANR allows new cells or cell clusters to automatically populate their
neighbor lists and the reciprocate cells neighbor list.

feature compatibility during the network planning or upgrade
phase. It could be linked to a future licensing system, where
a user can automatically estimate required software packages
to activate a network feature and then request a license
for them. Section II provides an overview of solutions to
the feature compatibility problem from domains other than
telecom. In section III we explain why it is important
to solve the addressed problem from current and future
perspectives. Then, sections IV and V describe an overview
and details of our new method that automates the assessment
of feature compatibility in telecom networks respectively.
We present the prototype of a tool that supports the new
method in section VI. Finally, in section VII we conclude
the paper.

II. RELATED WORK

The problem of feature compatibility has been identified
in several domains outside telecommunications. Research to
solve this problem has been ongoing for a long time. We
have identified three main domains into which the state of
the art can be assigned.

A. Software upgrade in distributed systems

Upgrading the software of long-lived, highly-available
distributed systems is difficult. It is not possible to upgrade
all the nodes in a system at once, since some nodes may be
inaccessible and halting the system for an upgrade is unac-
ceptable. This means that different nodes may be running
different software versions and yet need to communicate,
even though those versions may not be fully compatible.
Numerous methodologies and infrastructures that address
these challenges and make it possible to upgrade distributed
systems automatically while limiting service disruption have
been proposed in the past.

Senivongse [1], [2] describes how to use mappers to
enable cross-version interoperation during distributed up-
grades. A mapping operator is a mediator object that up-
grades an old-version request to a request for the new
service. To be able to intercept the request without alteration
on the underlying invocation protocol, the mapping operator
may disguise as an instance of the old service. By not know-
ing that the old service has evolved, the client transparently
binds to the mapping operator and sends a request to it. The
mapping operator does not execute the request but upgrades
the request and diverts it to an instance of the new-version
service.

Liskov et al. presents an ontological approach to describe
dependencies in the software system [3]. She defines dif-
ferent relationships and constraints of software components.
The authors claim that their method supports reasoning that
is needed to ensure that programs that work correctly using
the supertype component continue to work correctly with
the subtype.

B. Compatibility checking of evolving services

A major advantage of Service-Oriented Architectures
(SOA) is composition and coordination of loosely coupled
services. Because the development lifecycles of services and
clients are de-coupled, multiple service versions have to
be maintained to continue supporting older clients. Typi-
cally versions are managed within the SOA by updating
service descriptions using conventions on version numbers
and namespaces. Several automated methods to evaluate
compatibility among services have been created.

Becker et al. [4] propose to verify the compatibility among
services on the basis of a Versioning framework modelled
in UML. A service is represented within the SOA by a
model schema, which defines the external representation
of the service as a set of versioned abstractions and rela-
tionships between those abstractions. Authors refer to these
abstractions collectively as types. The service model defines
the collection of types exposed by the service within the
SOA. When a service implementation evolves, changes are
reflected in the corresponding service model with the update,
addition or removal of types that represent updated, added
or removed service functionality.

C. Feature interaction in telecom systems

In the early 1960s, switching systems began to rely on
software control for the establishment, maintenance, and
removal of connections necessary to complete telephone
calls. Since then, features (i.e. modifications of or enhance-
ments to the control of telecommunication services) are
added by modifying or enhancing this control software.
Mature switching systems can contain hundreds of features.
Unfortunately, as the number of features grows, so does the
time needed to introduce new ones. A key reason is that new
features may interact in unexpected or adverse ways with
existing features. These adverse or unexpected interactions
form the essence of what has become known as the feature-
interaction problem. This problem has been studied in 1990s
and numerous methods for detection of feature interaction
have been proposed.

Stepien and Logrippo [5] detect a category of interactions
which manifest itself in ambiguous actions, i.e., nondeter-
ministic behavior of the ’black box’ being specified like for
example the situation where the user presses a button, and
one of two different effects can follow. LOTOS [6] is used
as a formal description technique.

Inoue et al. [7], [8] detect interactions which manifest
themselves by nondeterministic state transitions, by the
absence of an executable state transition (deadlock), and
by transitions to so called “abnormal states” i.e. logical
contradictions in the relationship between the state of ter-
minals, using the State Transition Rules (STR) description
technique. Interactions are resolved by adding rules which
select one of the nondeterministic transitions or introduce a
new state transition, respectively.

Methods developed in the above studies cannot be directly
applied to solve the problem of feature compatibility in tele-
com domain where an automated system with a possibility
of human control would be a more suitable solution. In the
next section we describe in more detail the problem with
current approaches to the feature compatibility problem.

Nodes involved in SGSN In Pool feature.

Figure 1.

III. PROBLEM FORMULATION

An upgrade or deployment of the network is preceded by
a study of the compatibility between network components
and their versions. In addition, network features have specific
constraints and requirements that must be fulfilled before
the activation of a feature e.g. the SGSN In Pool feature
requires that SGSNs in a Pool are at the same version level.
The process of checking compatibility prior to activation
of a feature is manual and is performed by a network
expert. Therefore it is a time-demanding, error-prone and
expensive activity. To make matters worse this process
must be repeated every time a new feature is deployed or
upgraded.

Currently, an expert uses a compatibility matrix to check
the compatibility between different software releases and
network interfaces. It is a two-dimensional matrix® that spec-
ifies the node combinations with old and new releases and
the interfaces, which must be compatible. A compatibility
matrix tracks two levels of compatibility. The first level of
compatibility could be termed “implemented compatibility”.
This is where compatibility has been designed into specific

6The matrix is often built in a spreadsheet program such as Excel.

versions of nodes at either side of an interface. The second
level of compatibility can be termed “tested compatibility”.
This is where compatibility of an interface has been tested
and verified for an interface between specific versions of two
nodes.

The matrix is usually updated when a new version of
a node is released. Then the expert can use it every time
he plans an upgrade or deployment of a network feature.
Because the network feature spans across multiple nodes, the
compatibility matrix can be used to check the consistency
between software versions of nodes which have a direct
dependency. Consider the example of SGSN In Pool feature
shown in Figure 1.

SGSN In Pool makes it possible to connect a BSC
or RNC to several SGSNs. It introduces a more flexible
and efficient architecture with built-in network redundancy,
which replaces the traditional hierarchical network structure.
A specific SGSN In Pool for WCDMA feature involves
interaction between several RNCs, SGSNs and OSS nodes.
Before an activation of SGSN In Pool feature, an operator
must make sure that the versions of nodes interacting in the
feature are compatible.

In addition to checking the inter-node compatibility, an ex-
pert must verify that feature-specific constraints are fulfilled
in order to activate a feature. This information is usually
provided in the documentation describing the feature. An
example of such constraints is the requirement that, for the
“SGSN in Pool”feature, all SGSNs in a pool must be of the
same version level.

The current solution used to check feature compatibility is
not only cumbersome but also it is not future-proof. One of
the main objectives behind the design of the 3GPP System
Architecture Evolution (SAE) was to develop a new core net-
work architecture for Universal Mobile Telecommunications
System (UMTS) that addresses cost-efficient deployment
and operations for mass-market usage of IP services as well
as improvements in integration of other access technologies
in the network [9]. However the design and deployment
phases of SAE are expected to be more complex to deploy
than 3G core network.

In addition, in the near future the network will be com-
posed of equipment from two or three different technologies
(2G, 3G, LTE). The software update of such networks will
be more complex and will require more expertise than a
network composed of a single technology.

In the future, the core network may be composed of
equipment provided by different vendors. Because mobile
networks exist for many decades, there will be less new
network roll outs and the network vendors will have to
integrate new features and equipment with resources al-
ready deployed. Upgrade of features and software in such
heterogeneous environments will require a lot of expertise,
effort and time. In our solution we address the problem of
feature compatibility in current and next generation mobile

El softwareElement

InstalledIn
=l NetworkElement sl | g
: = attributes
attributes [0.1] (0.1 | Vendor: String
it
_Revi—iionl' Strir?g -Rew:!oh it i
-IdentifyingMumber : String CompaosedOf dentfyingumber ; Sring

: operations
operations classes

classes.

ActiveatedIn
[1.7] [L.1]

ActivatedSoftwareFeature (0.4 (0% ¢ IncludedIn

El softwareFeature

attributes
-Yendor ! String
-Release : String
-IelentifyingMurmber : String
-Rewvizion : String
operations
classes

Figure 2.

networks.

IV. SOLUTION OVERVIEW

In order to automate feature upgrade and deployment in
telecom networks we propose to introduce a new method.
This method may be supported by a tool, a prototype of
which is described in section VI. The proposed method is a
two-phase process.

In the first phase the system reads a model prepared
by an expert of the network feature. The model includes
the requirements and dependencies of the feature on other
features and software units (see Figure 3). The model is

Modelling ,

Figure 3.
assessment.

Instantiate and:ualidate::

model

Generate
wode P4

Three phases of the proposed method for feature compatibility

composed of two parts detailed in section V. The first
component is a UML meta-model that represents general
network components (like network elements or software
elements), their properties (e.g. release) and relationships
(e.g. InstalledOn). The second component is expressed by
OCL constraints that apply to a specific feature. This can
describe compatibility between software and network release
or required type of network elements in a feature.

In the second phase the model can be reused over and
over again for assessment of the compatibility of the feature
for different network instances. When a representation of
the network resources is instantiated, it includes information

The meta-model of features, software and network elements defined using UML

about deployed (or projected) network entities, connec-
tions between them and software units. This information is
combined with the models of network features previously
built. As a result, a compatibility matrix is automatically
composed which contains information about the existing (or
projected) features and their dependencies in the considered
network instance. Our method traverses the compatibility
matrix in order to verify if all the requirements provided in
the features’ models have been fulfilled in the considered
network instantiation.

If the assessment is successful, the user can deploy the
projected features according to the instantiated representa-
tion of the network verified with the method. Otherwise the
method proposes modifications to the network resources in
order to fulfill feature requirements.

Between the modelling and assessment phases, an inter-
mediate step of code generation is required (as shown in
Figure 3). In this step the information from the model is
transformed into an application that can be executed by a
user who wants to assess feature compatibility in a network
instantiation.

V. DETAILED DESCRIPTION OF THE SOLUTION

To realise and demonstrate the new automated process
described in section IV we developed three components: a
model, a method and a prototype that allows automatic veri-
fication of end-to-end compatibility among network features.

A. Feature model

The feature model enables common representation of
features and their dependencies in a telecom network. This
information can be then used to verify end-to-end com-
patibility among network features. The proposed model

expert \

1 r:;:iaerlnzf‘:?:t:rr'le’s List of nodes and -
relationships Lannecions
2
compatibility
experience -
machine learning
automatically
build FC matrix
4 8
3
feature(s) to check features upgrade node
activate compatibility
; ; 7
compatible not compatible request
sSW
5 3

activate
feature(s)

list
incompatibilities

check solution

unknown solution

known solution

Figure 4. Proposed method of automatic feature compatibility assessment.

is composed of two parts: UML meta-model and OCL
constraints [10].

1) Meta-model: Figure 2 shows a meta-model designed
using UML that represents elements that have an impact
on the feature compatibility in the telecom network. The
NetworkElement class corresponds to a logical entity in
telecom network (e.g. SGSN or RNC).

The SoftwareElement class represents a software package
that provides specific functionality on a network element.
This could be for example IP connectivity or Support for
SGSN In Pool on RNC. SoftwareElements can be installed
on NetworkElements which is expressed by the relationship
Installed/InstalledIn.

The SoftwareFeature class models network functionality,
usually deployed over several nodes. This could be for ex-
ample SGSNInPoolForWCDMA which involves interaction
between several SGSNs, RNCs and an OSS. This interaction
is modelled by the ActivatedSoftwareFeature/ActivatedIn
relationship. Also, SoftwareFeature may be implemented
in several SoftwareElements which is represented by the
relationship ComposedOf/IncludedIn.

These classes have similar properties (Vendor, Release,
Revision and IdentifyingNumber) used for the assessment
of feature compatibilities. The Vendor property provides
information about the provider of the corresponding class.
This information will be explored in particular for the
multiple-domain networks. The Release and Revision prop-

erties are used to distinguish different versions of modelled
entity. These parameters are important for the assessment
of compatibility because the compatibility between different
types of nodes is version-based. Finally the purpose of
the IdentifyingNumber property is to uniquely identify the
modelled entity.

This meta-model can be extended to represent specific
network features, network and software elements. The above
meta-model is decorated with OCL constraints which de-
scribe feature-specific requirements.

2) OCL constraints: The Object Constraint Language
(OCL) [11] is a commonly used declarative language for
describing constraints (rules) that apply to UML models.
These constraints are the conditions that must be true about
some aspect of the system and can be automatically verified
on an instantiation of the UML model. The network feature
can have different constraints that are grouped in three
categories:

o Generic requirements for the network feature. These
constraints are specific to the network feature. It may
be a requirement about existence of other features,
software elements or network elements. In case of
SGSN In Pool it is the requirement about SGSN nodes
included in the feature.

« Requirements about software elements and their version
needed on the network elements. In order to support a
feature the network element requires specific software

UML +OCL Ecore
modelling ’ model ,
Figure 5.

elements. In case of SGSN In Pool an RNC node re-
quires specific version of software element that supports
SGSN In Pool functionality.

« Constraints about the compatible version of nodes that
are present in the software feature. For the SGSN In
Pool scenario it may be a condition that SGSN Release
“X” Revision “x” is compatible with RNC Release “Y”
revision “y”.

Once the OCL constraints are created they can be au-
tomatically validated against various instantiations of the
UML model. The validation process consists of traversing
the feature model and applying the OCL constraints to the
appropriate entities.

B. Compatibility assessment mechanism

The new method applied during the “Instantiate and
Validate model” step from Figure 3 is detailed in Figure 4.

The method relies on a model of features and their
relationships provided by an expert. The model could also be
built on the basis of the previous experience using machine
learning (1 in Figure 4). In addition to that network elements
of a specific network instance send information about their
current software packages (2). The system automatically
builds a feature compatibility matrix which represents the
information about the compatibility between the existing
components of the assessed network. A user can select a new
feature or a new version of an existing feature to be activated
(3). The tool will automatically check if the compatibility
requirements are fulfilled (4). If the verification is successful,
the features will be activated (5). Otherwise the system will
look for a solution (6) and will request the vendor for the
required software (7) or provide the list of incompatibilities
if it cannot find the solution. The system will be informed
about each software upgrade by the relevant node (8) and
if there are any features waiting for activation, it will check
compatibilities and eventually activate the features.

The proposed process may be partially or fully automated:
it can be fully controlled by a user who can approve
the activation of a network feature. The interaction of a
network expert is minimized in comparison to the current
process. The expert’s expertise is needed only once, at the
beginning of the process to model a network feature and
its prerequisites. The expert’s model is reused over and
over again by the automated tool whenever an instance of
the modeled feature needs to be activated. In the current
approach, the expert is required every time a new feature is
activated.

Java dava Rules
classes , objects- Validation

Intermediate steps to assess feature compatibility.

VI. PROTOTYPE OF THE SOLUTION

The prototype of a system that demonstrates the new
automated method of feature compatibility assessment is
based on the Eclipse platform and is composed of several
modules (plug-ins). A schema of the application is shown
in Figure 6.

Prototype application

UML2 Tools

Validation

EMF

Generic Workbench

Platform Runtime

JVM

Figure 6. Schema of the prototype application.

The application is Java based and therefore runs on
top of a JVM and an Eclipse Platform Runtime which
is responsible for the activation and management of the
application modules when they are required. The prototype
runs as a Generic Workbench application. Workbench is the
term used for the generic Eclipse UI [12].

The application requires an Integrated Development En-
vironment (IDE) to display and eventually modify the code
generated by the prototype. Automatically generated code
can be modified and to simply this task the Eclipse IDE
provides several functions like source code editor, build
automation tools and debugger.

The Graphical Editing Framework (GEF) module enables
a graphical representation of the feature components. GEF is
used by the expert to model a feature in a tree-based editor
or UML class diagram. Also an expert uses GEF functions
when he represents network instances in tree-based editor.

Eclipse Modelling Framework (EMF) is the core com-
ponent of the prototype. It provides the functionality of
Unified Modelling Language (UML) modeling and Object
Constraint Language (OCL) constraints generation. It also
enables the generation of the Java code on the basis of the

= Batch Validation

Validation failed in the following areas (click OK to select problem elements in the editor):

= || = e

£l m

"Ne Rnc R6 Revl Galway" does not comply to the rule that RNCRERevl is compatible with SGSNRE, SGSNR2008B, SGSMR2009RevA and SGSNR2009RevB. Check all the RMCRE|
"5f Sgsn In Pool For Wedma RI Rev B Dublin:Athlone” dees not comply to the rule that SG5M nodes have to be of the type SG5NR7Revl in a 5F SgsnInPoolForWCDMARL
"5f Sgsn In Pool For Wedma RL Rev B Dublin;Athlone” does not comply to the rule that RNC requires SeSupportForSgsninPeolForWedmaOnRncRIRevD

OK ‘ | Cancel

Figure 7. Proposed solution to the SGSN In Pool feature incompatibilities.

UML model. Finally, EMF allows the instantiation of the
UML model.

A UML model can be transformed into a class-diagram
with the UML2 Tools plug-in. An expert can work with
a tree-based editor and a class-diagram to build a feature
model. UML2 Tools assures synchronisation between these
two visual reresentations.

The Validation framework [13] is used to apply the
rules expressed in OCL to an instance of the UML model.
When a user decides to check compatibility of a network
feature, the validation framework traverses the representation
of a network instance and applies the predefined rules to
appropriate feature components. Whenever a rule is broken,
the framework raises an exception and starts an action
predefined by the expert.

4 |4 platform:/resource/test/My.systemmodel
4 < System
4 4 Software Elements
< Se Sgsn In Pool For Wedma On Sgsn R1 Rev B Dublin
< Se SgsnIn Pool For Wedma On Sgsn R1 Rev B Athlone
4 < Network Elements
4 MeSgsn RS Revl Dublin
4 Me Sgsn RS Revl Athlone
<+ MeRncR6 Revl Galway
4 4 Software Features
4 < 5FsSgsnln Pool For Wedma
<> Sf Sgsn In Pool For Wedma R1 Rev B Dublin:Athlone

Selection | Parent| List | Tree| Table | Tree with Columns |

& Tasks [E) Properties EI Console
Property Value
Feature Members < Me Rnc RE Revl Galway, Me Sgsn R6 Revl Dublin, Ne Sgsn R6 Revl Athlone
Id = FAJ1210043R1RevE
Mandatory
Name '= Dublin;Athlone
Opticnal
Release =1
Revision =B

Figure 8. SGSN In Pool feature represented in the prototyped tool.

The prototype can be used by an expert for modeling
a network feature (during the first phase of the process
described in section V) and by a user to assess compatibility
among network features in an instance of a network (during
the last phase of the proposed process). Figure 5 shows the
intermediate steps performed by the prototype in order to
assess compatibility of a network feature.

First, an expert models the network features in UML, their
constraints and rules in OCL. The expert then automatically

generates a corresponding Ecore model [13] (which is an
internal EMF representation of the UML model) which in
turn, is used to generate Java code (Java classes) automati-
cally. This code includes a representation of the UML model
in Java, an application to graphically generate an instance of
the model and a validation engine that is responsible for the
application of the predefined OCL rules to the instantiation
of the model.

The generated code is an automatically generated appli-
cation that is executed by a user in order to hold a model
of the software features in a particular network instance
and to check their compatibility before an upgrade or a
deployment of a new feature. To do that, the user first creates
an instantiation of the UML model that corresponds to the
representation of the network for which the compatibility
is to be assessed. This instantiation will be composed of
Java objects. Once the instantiation is complete, a user can
validate software features (Rules Validation) using the rules
defined in OCL and check if a new or upgraded feature can
be activated.

The prototype system provides information about the
incompatibilities of the assessed network feature. If it dis-
covers any inconsistency in the network feature, the user
will be provided with the list of solutions that would result
in a correct configuration of the network feature.

Figure 8 shows an example of SGSN In Pool network
feature described in section III. The SGSN In Pool feature
is provided by three nodes (Network Elements): two SGSNs
and one RNC. The model also represents two software
packages (Software Elements) installed on both SGSNs. The
prototyped tool discovered three incompatibilities in this
feature in a particular simulated network instance. It also
provides a list of modifications (shown in Figure 7) that need
to be implemented in order to achieve feature compatibility.

First, the tool discovered that the versions of SGSNs and
RNCs in this feature instance are incompatible. Secondly,
the modeled instance of the SGSN In Pool feature requires a
different version of SGSN nodes. Finally, a software package
supporting SGSN In Pool feature needs to be installed on
the RNC node. Once these modifications are introduced, the
network feature compatibility would be fulfilled.

VII. CONCLUSION

We proposed a new method of automatic feature compat-
ibility assessment in mobile networks. This method enables
easier and faster deployment of a new network or an upgrade
of an already existing telecom network. Moreover it can
become a part of an automatic license management solution.
After a network operator activates new network features
the system will automatically recognize which software
packages are required on the nodes and request them from
the vendor. We also described a prototype of a tool that can
be used to support the described method. It demonstrates
the possibility of integration of commonly used techniques
(UML and OCL modeling) with standard technologies (Java,
Eclipse) into the proposed method. This would facilitate the
integration and use of the described approach into already
existing systems.

REFERENCES

[1] T. Senivongse, “Enabling flexible cross-version interoperabil-
ity for distributed services,” in DOA ’99: Proceedings of the
International Symposium on Distributed Objects and Appli-
cations. Washington, DC, USA: IEEE Computer Society,
1999, p. 201.

[2] T. Senivongse and I. Utting, “A model for evolution of
services in distributed systems,” in Distributed Platforms,
S. Schill, Mittasch and Popien, Eds. Chapman and
Hall, January 1996, pp. 373-385. [Online]. Available:
http://www.cs.kent.ac.uk/pubs/1996/341

[3] B. H. Liskov and J. M. Wing, “A behavioral notion of
subtyping,” ACM Transactions on Programming Languages
and Systems, vol. 16, pp. 1811-1841, 1994.

[4] K. Becker, A. Lopes, D. S. Milojicic, J. Pruyne, and S. Sing-
hal, “Automatically determining compatibility of evolving
services,” Web Services, IEEE International Conference on,
vol. 0, pp. 161-168, 2008.

[5] B. Stépien and L. M. S. Logrippo, “Feature interaction detec-
tion using backward reasoning with LOTOS,” in Proc. Proto-
col Specification, Testing and Verification X1V, S. Vuong, Ed.
Amsterdam, Netherlands: North-Holland, Oct. 1995, pp. 71—
86.

[6] T. Bolognesi and E. Brinksma, “Introduction to the iso
specification language lotos,” Computer Networks, vol. 14,
pp- 25-59, 1987.

[7] Y. Inoue, K. Takami, and T. Ohta, “Method for supporting de-
tection and elimination of feature interaction in a telecommu-
nication system,” in Proc. International Workshop on Feature
Interactions in Telecommunications Software Systems, Dec.
1992, pp. 61-81.

[8] Y. Inoue, T. Ohta, and K. Takami, “Automatic detection
of service interactions in telecommunications service spec-
ifications,” in Communications, 1994. ICC ’94, SUPER-
COMM/ICC 94, Conference Record, ’Serving Humanity
Through Communications.” IEEE International Conference
on, May 1994, pp. 1835-1841 vol.3.

[9] Ericsson, “LTE an introduction,” White paper, June
2009, available online (16 pages). [Online]. Available:
www.ericsson.com/technology/whitepapers/lte_overview.pdf

[10] OMG, “Technical guide to Model Driven Architecture: The
MDA guide,” OMG paper, June 2003, available online
(62 pages). [Online]. Available: http://www.omg.org/cgi-
bin/doc?0omg/03-06-01.pdf

[11] “Object modeling with the ocl, the rationale behind the object
constraint language,” London, UK, 2002.

[12] J. McAffer and J.-M. Lemieux, Eclipse Rich Client Platform:
Designing, Coding, and Packaging Java(TM) Applications.
Addison-Wesley Professional, 2005.

[13] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks,
EMEF: Eclipse Modeling Framework 2.0. Addison-Wesley
Professional, 2009.

